skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dani, Pallavi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Genevois recently classified which graph braid groups are word hyperbolic. In the 3-strand case, he asked whether all such word hyperbolic groups are actually free; this reduced to checking two infinite classes of graphs: sun and pulsar graphs. We prove that 3-strand braid groups of sun graphs are free. On the other hand, it was known to experts that 3-strand braid groups of most pulsar graphs contain surface subgroups. We provide a simple proof of this and prove an additional structure theorem for these groups. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  2. We investigate the planarity of the boundaries of right-angled Coxeter groups. We show that non-planarity of the defining graph does not necessarily imply non-planarity of every boundary of the associated right- angled Coxeter group, although it does in many cases. Our techniques yield a characterization of the triangle-free defining graphs such that the associated right-angled Coxeter group has boundary a Menger curve. 
    more » « less
  3. We provide a new method of constructing non-quasiconvex subgroups of hyperbolic groups by utilizing techniques inspired by Stallings’ foldings. The hyperbolic groups constructed are in the natural class of right-angled Coxeter groups (RACGs for short) and can be chosen to be 2 2 -dimensional. More specifically, given a non-quasiconvex subgroup of a (possibly non-hyperbolic) RACG, our construction gives a corresponding non-quasiconvex subgroup of a hyperbolic RACG. We use this to construct explicit examples of non-quasiconvex subgroups of hyperbolic RACGs including subgroups whose generators are as short as possible (length two words), finitely generated free subgroups, non-finitely presentable subgroups, and subgroups of fundamental groups of square complexes of nonpositive sectional curvature. 
    more » « less